3.8.52 \(\int \cot ^{\frac {5}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)} \, dx\) [752]

Optimal. Leaf size=140 \[ -\frac {(1-i) \sqrt {a} \tanh ^{-1}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right ) \sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}}{d}-\frac {2 i \sqrt {\cot (c+d x)} \sqrt {a+i a \tan (c+d x)}}{3 d}-\frac {2 \cot ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{3 d} \]

[Out]

(-1+I)*arctanh((1+I)*a^(1/2)*tan(d*x+c)^(1/2)/(a+I*a*tan(d*x+c))^(1/2))*a^(1/2)*cot(d*x+c)^(1/2)*tan(d*x+c)^(1
/2)/d-2/3*cot(d*x+c)^(3/2)*(a+I*a*tan(d*x+c))^(1/2)/d-2/3*I*cot(d*x+c)^(1/2)*(a+I*a*tan(d*x+c))^(1/2)/d

________________________________________________________________________________________

Rubi [A]
time = 0.22, antiderivative size = 140, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, integrand size = 28, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.214, Rules used = {4326, 3642, 3679, 12, 3625, 211} \begin {gather*} -\frac {2 \cot ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{3 d}-\frac {2 i \sqrt {\cot (c+d x)} \sqrt {a+i a \tan (c+d x)}}{3 d}-\frac {(1-i) \sqrt {a} \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \tanh ^{-1}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Cot[c + d*x]^(5/2)*Sqrt[a + I*a*Tan[c + d*x]],x]

[Out]

((-1 + I)*Sqrt[a]*ArcTanh[((1 + I)*Sqrt[a]*Sqrt[Tan[c + d*x]])/Sqrt[a + I*a*Tan[c + d*x]]]*Sqrt[Cot[c + d*x]]*
Sqrt[Tan[c + d*x]])/d - (((2*I)/3)*Sqrt[Cot[c + d*x]]*Sqrt[a + I*a*Tan[c + d*x]])/d - (2*Cot[c + d*x]^(3/2)*Sq
rt[a + I*a*Tan[c + d*x]])/(3*d)

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 211

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/Rt[a/b, 2]], x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 3625

Int[Sqrt[(a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]]/Sqrt[(c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[
-2*a*(b/f), Subst[Int[1/(a*c - b*d - 2*a^2*x^2), x], x, Sqrt[c + d*Tan[e + f*x]]/Sqrt[a + b*Tan[e + f*x]]], x]
 /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0]

Rule 3642

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim
p[d*(a + b*Tan[e + f*x])^m*((c + d*Tan[e + f*x])^(n + 1)/(f*(n + 1)*(c^2 + d^2))), x] - Dist[1/(a*(c^2 + d^2)*
(n + 1)), Int[(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^(n + 1)*Simp[b*d*m - a*c*(n + 1) + a*d*(m + n + 1)*T
an[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[c^
2 + d^2, 0] && LtQ[n, -1] && (IntegerQ[n] || IntegersQ[2*m, 2*n])

Rule 3679

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(A*d - B*c)*(a + b*Tan[e + f*x])^m*((c + d*Tan[e + f*x])^(n + 1)/(f*
(n + 1)*(c^2 + d^2))), x] - Dist[1/(a*(n + 1)*(c^2 + d^2)), Int[(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^(n
 + 1)*Simp[A*(b*d*m - a*c*(n + 1)) - B*(b*c*m + a*d*(n + 1)) - a*(B*c - A*d)*(m + n + 1)*Tan[e + f*x], x], x],
 x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && LtQ[n, -1]

Rule 4326

Int[(cot[(a_.) + (b_.)*(x_)]*(c_.))^(m_.)*(u_), x_Symbol] :> Dist[(c*Cot[a + b*x])^m*(c*Tan[a + b*x])^m, Int[A
ctivateTrig[u]/(c*Tan[a + b*x])^m, x], x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownTangentIntegrandQ
[u, x]

Rubi steps

\begin {align*} \int \cot ^{\frac {5}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)} \, dx &=\left (\sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}\right ) \int \frac {\sqrt {a+i a \tan (c+d x)}}{\tan ^{\frac {5}{2}}(c+d x)} \, dx\\ &=-\frac {2 \cot ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{3 d}+\frac {\left (2 \sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}\right ) \int \frac {\left (\frac {i a}{2}-a \tan (c+d x)\right ) \sqrt {a+i a \tan (c+d x)}}{\tan ^{\frac {3}{2}}(c+d x)} \, dx}{3 a}\\ &=-\frac {2 i \sqrt {\cot (c+d x)} \sqrt {a+i a \tan (c+d x)}}{3 d}-\frac {2 \cot ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{3 d}+\frac {\left (4 \sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}\right ) \int -\frac {3 a^2 \sqrt {a+i a \tan (c+d x)}}{4 \sqrt {\tan (c+d x)}} \, dx}{3 a^2}\\ &=-\frac {2 i \sqrt {\cot (c+d x)} \sqrt {a+i a \tan (c+d x)}}{3 d}-\frac {2 \cot ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{3 d}-\left (\sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}\right ) \int \frac {\sqrt {a+i a \tan (c+d x)}}{\sqrt {\tan (c+d x)}} \, dx\\ &=-\frac {2 i \sqrt {\cot (c+d x)} \sqrt {a+i a \tan (c+d x)}}{3 d}-\frac {2 \cot ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{3 d}+\frac {\left (2 i a^2 \sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}\right ) \text {Subst}\left (\int \frac {1}{-i a-2 a^2 x^2} \, dx,x,\frac {\sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}\\ &=-\frac {(1-i) \sqrt {a} \tanh ^{-1}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right ) \sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}}{d}-\frac {2 i \sqrt {\cot (c+d x)} \sqrt {a+i a \tan (c+d x)}}{3 d}-\frac {2 \cot ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{3 d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 1.06, size = 125, normalized size = 0.89 \begin {gather*} -\frac {i e^{-i (c+d x)} \left (4 e^{3 i (c+d x)}-3 \left (-1+e^{2 i (c+d x)}\right )^{3/2} \tanh ^{-1}\left (\frac {e^{i (c+d x)}}{\sqrt {-1+e^{2 i (c+d x)}}}\right )\right ) \sqrt {\cot (c+d x)} \sqrt {a+i a \tan (c+d x)}}{3 d \left (-1+e^{2 i (c+d x)}\right )} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Cot[c + d*x]^(5/2)*Sqrt[a + I*a*Tan[c + d*x]],x]

[Out]

((-1/3*I)*(4*E^((3*I)*(c + d*x)) - 3*(-1 + E^((2*I)*(c + d*x)))^(3/2)*ArcTanh[E^(I*(c + d*x))/Sqrt[-1 + E^((2*
I)*(c + d*x))]])*Sqrt[Cot[c + d*x]]*Sqrt[a + I*a*Tan[c + d*x]])/(d*E^(I*(c + d*x))*(-1 + E^((2*I)*(c + d*x))))

________________________________________________________________________________________

Maple [B] Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 1040 vs. \(2 (112 ) = 224\).
time = 43.42, size = 1041, normalized size = 7.44

method result size
default \(\text {Expression too large to display}\) \(1041\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cot(d*x+c)^(5/2)*(a+I*a*tan(d*x+c))^(1/2),x,method=_RETURNVERBOSE)

[Out]

-1/6/d*(4*I*sin(d*x+c)*cos(d*x+c)*2^(1/2)-6*I*arctan(((-1+cos(d*x+c))/sin(d*x+c))^(1/2)*2^(1/2)+1)*((-1+cos(d*
x+c))/sin(d*x+c))^(1/2)+6*I*arctan(((-1+cos(d*x+c))/sin(d*x+c))^(1/2)*2^(1/2)-1)*((-1+cos(d*x+c))/sin(d*x+c))^
(1/2)*cos(d*x+c)^2+6*arctan(((-1+cos(d*x+c))/sin(d*x+c))^(1/2)*2^(1/2)+1)*((-1+cos(d*x+c))/sin(d*x+c))^(1/2)*c
os(d*x+c)^2+6*arctan(((-1+cos(d*x+c))/sin(d*x+c))^(1/2)*2^(1/2)-1)*((-1+cos(d*x+c))/sin(d*x+c))^(1/2)*cos(d*x+
c)^2+3*ln(-(((-1+cos(d*x+c))/sin(d*x+c))^(1/2)*2^(1/2)*sin(d*x+c)-sin(d*x+c)-cos(d*x+c)+1)/(((-1+cos(d*x+c))/s
in(d*x+c))^(1/2)*2^(1/2)*sin(d*x+c)+sin(d*x+c)+cos(d*x+c)-1))*((-1+cos(d*x+c))/sin(d*x+c))^(1/2)*cos(d*x+c)^2+
6*I*arctan(((-1+cos(d*x+c))/sin(d*x+c))^(1/2)*2^(1/2)+1)*((-1+cos(d*x+c))/sin(d*x+c))^(1/2)*cos(d*x+c)^2-3*I*l
n(-(((-1+cos(d*x+c))/sin(d*x+c))^(1/2)*2^(1/2)*sin(d*x+c)+sin(d*x+c)+cos(d*x+c)-1)/(((-1+cos(d*x+c))/sin(d*x+c
))^(1/2)*2^(1/2)*sin(d*x+c)-sin(d*x+c)-cos(d*x+c)+1))*((-1+cos(d*x+c))/sin(d*x+c))^(1/2)+3*I*ln(-(((-1+cos(d*x
+c))/sin(d*x+c))^(1/2)*2^(1/2)*sin(d*x+c)+sin(d*x+c)+cos(d*x+c)-1)/(((-1+cos(d*x+c))/sin(d*x+c))^(1/2)*2^(1/2)
*sin(d*x+c)-sin(d*x+c)-cos(d*x+c)+1))*((-1+cos(d*x+c))/sin(d*x+c))^(1/2)*cos(d*x+c)^2-2*I*sin(d*x+c)*2^(1/2)-6
*I*arctan(((-1+cos(d*x+c))/sin(d*x+c))^(1/2)*2^(1/2)-1)*((-1+cos(d*x+c))/sin(d*x+c))^(1/2)+4*2^(1/2)*cos(d*x+c
)^2-6*arctan(((-1+cos(d*x+c))/sin(d*x+c))^(1/2)*2^(1/2)+1)*((-1+cos(d*x+c))/sin(d*x+c))^(1/2)-6*arctan(((-1+co
s(d*x+c))/sin(d*x+c))^(1/2)*2^(1/2)-1)*((-1+cos(d*x+c))/sin(d*x+c))^(1/2)-3*ln(-(((-1+cos(d*x+c))/sin(d*x+c))^
(1/2)*2^(1/2)*sin(d*x+c)-sin(d*x+c)-cos(d*x+c)+1)/(((-1+cos(d*x+c))/sin(d*x+c))^(1/2)*2^(1/2)*sin(d*x+c)+sin(d
*x+c)+cos(d*x+c)-1))*((-1+cos(d*x+c))/sin(d*x+c))^(1/2)-2*cos(d*x+c)*2^(1/2)-2*2^(1/2))*sin(d*x+c)*(cos(d*x+c)
/sin(d*x+c))^(5/2)*(a*(I*sin(d*x+c)+cos(d*x+c))/cos(d*x+c))^(1/2)/(I*sin(d*x+c)+cos(d*x+c)-1)/cos(d*x+c)^2*2^(
1/2)

________________________________________________________________________________________

Maxima [B] Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 961 vs. \(2 (104) = 208\).
time = 0.59, size = 961, normalized size = 6.86 \begin {gather*} \frac {2 \, \sqrt {\cos \left (2 \, d x + 2 \, c\right )^{2} + \sin \left (2 \, d x + 2 \, c\right )^{2} - 2 \, \cos \left (2 \, d x + 2 \, c\right ) + 1} {\left ({\left (-\left (3 i - 3\right ) \, \cos \left (3 \, d x + 3 \, c\right ) - \left (i - 1\right ) \, \cos \left (d x + c\right ) + \left (3 i + 3\right ) \, \sin \left (3 \, d x + 3 \, c\right ) + \left (i + 1\right ) \, \sin \left (d x + c\right )\right )} \cos \left (\frac {3}{2} \, \arctan \left (\sin \left (2 \, d x + 2 \, c\right ), \cos \left (2 \, d x + 2 \, c\right ) - 1\right )\right ) + {\left (-\left (3 i + 3\right ) \, \cos \left (3 \, d x + 3 \, c\right ) - \left (i + 1\right ) \, \cos \left (d x + c\right ) - \left (3 i - 3\right ) \, \sin \left (3 \, d x + 3 \, c\right ) - \left (i - 1\right ) \, \sin \left (d x + c\right )\right )} \sin \left (\frac {3}{2} \, \arctan \left (\sin \left (2 \, d x + 2 \, c\right ), \cos \left (2 \, d x + 2 \, c\right ) - 1\right )\right )\right )} \sqrt {a} + 3 \, {\left (2 \, {\left (-\left (i + 1\right ) \, \cos \left (2 \, d x + 2 \, c\right )^{2} - \left (i + 1\right ) \, \sin \left (2 \, d x + 2 \, c\right )^{2} + \left (2 i + 2\right ) \, \cos \left (2 \, d x + 2 \, c\right ) - i - 1\right )} \arctan \left (2 \, {\left (\cos \left (2 \, d x + 2 \, c\right )^{2} + \sin \left (2 \, d x + 2 \, c\right )^{2} - 2 \, \cos \left (2 \, d x + 2 \, c\right ) + 1\right )}^{\frac {1}{4}} \sin \left (\frac {1}{2} \, \arctan \left (\sin \left (2 \, d x + 2 \, c\right ), \cos \left (2 \, d x + 2 \, c\right ) - 1\right )\right ) + 2 \, \sin \left (d x + c\right ), 2 \, {\left (\cos \left (2 \, d x + 2 \, c\right )^{2} + \sin \left (2 \, d x + 2 \, c\right )^{2} - 2 \, \cos \left (2 \, d x + 2 \, c\right ) + 1\right )}^{\frac {1}{4}} \cos \left (\frac {1}{2} \, \arctan \left (\sin \left (2 \, d x + 2 \, c\right ), \cos \left (2 \, d x + 2 \, c\right ) - 1\right )\right ) + 2 \, \cos \left (d x + c\right )\right ) + {\left (\left (i - 1\right ) \, \cos \left (2 \, d x + 2 \, c\right )^{2} + \left (i - 1\right ) \, \sin \left (2 \, d x + 2 \, c\right )^{2} - \left (2 i - 2\right ) \, \cos \left (2 \, d x + 2 \, c\right ) + i - 1\right )} \log \left (4 \, \cos \left (d x + c\right )^{2} + 4 \, \sin \left (d x + c\right )^{2} + 4 \, \sqrt {\cos \left (2 \, d x + 2 \, c\right )^{2} + \sin \left (2 \, d x + 2 \, c\right )^{2} - 2 \, \cos \left (2 \, d x + 2 \, c\right ) + 1} {\left (\cos \left (\frac {1}{2} \, \arctan \left (\sin \left (2 \, d x + 2 \, c\right ), \cos \left (2 \, d x + 2 \, c\right ) - 1\right )\right )^{2} + \sin \left (\frac {1}{2} \, \arctan \left (\sin \left (2 \, d x + 2 \, c\right ), \cos \left (2 \, d x + 2 \, c\right ) - 1\right )\right )^{2}\right )} + 8 \, {\left (\cos \left (2 \, d x + 2 \, c\right )^{2} + \sin \left (2 \, d x + 2 \, c\right )^{2} - 2 \, \cos \left (2 \, d x + 2 \, c\right ) + 1\right )}^{\frac {1}{4}} {\left (\cos \left (d x + c\right ) \cos \left (\frac {1}{2} \, \arctan \left (\sin \left (2 \, d x + 2 \, c\right ), \cos \left (2 \, d x + 2 \, c\right ) - 1\right )\right ) + \sin \left (d x + c\right ) \sin \left (\frac {1}{2} \, \arctan \left (\sin \left (2 \, d x + 2 \, c\right ), \cos \left (2 \, d x + 2 \, c\right ) - 1\right )\right )\right )}\right )\right )} {\left (\cos \left (2 \, d x + 2 \, c\right )^{2} + \sin \left (2 \, d x + 2 \, c\right )^{2} - 2 \, \cos \left (2 \, d x + 2 \, c\right ) + 1\right )}^{\frac {1}{4}} \sqrt {a} + 2 \, {\left ({\left ({\left (-\left (i - 1\right ) \, \cos \left (d x + c\right ) + \left (i + 1\right ) \, \sin \left (d x + c\right )\right )} \cos \left (2 \, d x + 2 \, c\right )^{2} + {\left (-\left (i - 1\right ) \, \cos \left (d x + c\right ) + \left (i + 1\right ) \, \sin \left (d x + c\right )\right )} \sin \left (2 \, d x + 2 \, c\right )^{2} + 2 \, {\left (\left (i - 1\right ) \, \cos \left (d x + c\right ) - \left (i + 1\right ) \, \sin \left (d x + c\right )\right )} \cos \left (2 \, d x + 2 \, c\right ) - \left (i - 1\right ) \, \cos \left (d x + c\right ) + \left (i + 1\right ) \, \sin \left (d x + c\right )\right )} \cos \left (\frac {1}{2} \, \arctan \left (\sin \left (2 \, d x + 2 \, c\right ), \cos \left (2 \, d x + 2 \, c\right ) - 1\right )\right ) + {\left ({\left (-\left (i + 1\right ) \, \cos \left (d x + c\right ) - \left (i - 1\right ) \, \sin \left (d x + c\right )\right )} \cos \left (2 \, d x + 2 \, c\right )^{2} + {\left (-\left (i + 1\right ) \, \cos \left (d x + c\right ) - \left (i - 1\right ) \, \sin \left (d x + c\right )\right )} \sin \left (2 \, d x + 2 \, c\right )^{2} + 2 \, {\left (\left (i + 1\right ) \, \cos \left (d x + c\right ) + \left (i - 1\right ) \, \sin \left (d x + c\right )\right )} \cos \left (2 \, d x + 2 \, c\right ) - \left (i + 1\right ) \, \cos \left (d x + c\right ) - \left (i - 1\right ) \, \sin \left (d x + c\right )\right )} \sin \left (\frac {1}{2} \, \arctan \left (\sin \left (2 \, d x + 2 \, c\right ), \cos \left (2 \, d x + 2 \, c\right ) - 1\right )\right )\right )} \sqrt {a}}{6 \, {\left (\cos \left (2 \, d x + 2 \, c\right )^{2} + \sin \left (2 \, d x + 2 \, c\right )^{2} - 2 \, \cos \left (2 \, d x + 2 \, c\right ) + 1\right )}^{\frac {5}{4}} d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)^(5/2)*(a+I*a*tan(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

1/6*(2*sqrt(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 - 2*cos(2*d*x + 2*c) + 1)*((-(3*I - 3)*cos(3*d*x + 3*c) -
(I - 1)*cos(d*x + c) + (3*I + 3)*sin(3*d*x + 3*c) + (I + 1)*sin(d*x + c))*cos(3/2*arctan2(sin(2*d*x + 2*c), co
s(2*d*x + 2*c) - 1)) + (-(3*I + 3)*cos(3*d*x + 3*c) - (I + 1)*cos(d*x + c) - (3*I - 3)*sin(3*d*x + 3*c) - (I -
 1)*sin(d*x + c))*sin(3/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) - 1)))*sqrt(a) + 3*(2*(-(I + 1)*cos(2*d*x
 + 2*c)^2 - (I + 1)*sin(2*d*x + 2*c)^2 + (2*I + 2)*cos(2*d*x + 2*c) - I - 1)*arctan2(2*(cos(2*d*x + 2*c)^2 + s
in(2*d*x + 2*c)^2 - 2*cos(2*d*x + 2*c) + 1)^(1/4)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) - 1)) + 2
*sin(d*x + c), 2*(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 - 2*cos(2*d*x + 2*c) + 1)^(1/4)*cos(1/2*arctan2(sin(
2*d*x + 2*c), cos(2*d*x + 2*c) - 1)) + 2*cos(d*x + c)) + ((I - 1)*cos(2*d*x + 2*c)^2 + (I - 1)*sin(2*d*x + 2*c
)^2 - (2*I - 2)*cos(2*d*x + 2*c) + I - 1)*log(4*cos(d*x + c)^2 + 4*sin(d*x + c)^2 + 4*sqrt(cos(2*d*x + 2*c)^2
+ sin(2*d*x + 2*c)^2 - 2*cos(2*d*x + 2*c) + 1)*(cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) - 1))^2 + s
in(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) - 1))^2) + 8*(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 - 2*co
s(2*d*x + 2*c) + 1)^(1/4)*(cos(d*x + c)*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) - 1)) + sin(d*x + c
)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) - 1)))))*(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 - 2*cos
(2*d*x + 2*c) + 1)^(1/4)*sqrt(a) + 2*(((-(I - 1)*cos(d*x + c) + (I + 1)*sin(d*x + c))*cos(2*d*x + 2*c)^2 + (-(
I - 1)*cos(d*x + c) + (I + 1)*sin(d*x + c))*sin(2*d*x + 2*c)^2 + 2*((I - 1)*cos(d*x + c) - (I + 1)*sin(d*x + c
))*cos(2*d*x + 2*c) - (I - 1)*cos(d*x + c) + (I + 1)*sin(d*x + c))*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x
 + 2*c) - 1)) + ((-(I + 1)*cos(d*x + c) - (I - 1)*sin(d*x + c))*cos(2*d*x + 2*c)^2 + (-(I + 1)*cos(d*x + c) -
(I - 1)*sin(d*x + c))*sin(2*d*x + 2*c)^2 + 2*((I + 1)*cos(d*x + c) + (I - 1)*sin(d*x + c))*cos(2*d*x + 2*c) -
(I + 1)*cos(d*x + c) - (I - 1)*sin(d*x + c))*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) - 1)))*sqrt(a)
)/((cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 - 2*cos(2*d*x + 2*c) + 1)^(5/4)*d)

________________________________________________________________________________________

Fricas [B] Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 326 vs. \(2 (104) = 208\).
time = 0.98, size = 326, normalized size = 2.33 \begin {gather*} \frac {-16 i \, \sqrt {2} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} - 1}} e^{\left (3 i \, d x + 3 i \, c\right )} - 3 \, {\left (d e^{\left (2 i \, d x + 2 i \, c\right )} - d\right )} \sqrt {-\frac {8 i \, a}{d^{2}}} \log \left ({\left (\sqrt {2} {\left (i \, d e^{\left (2 i \, d x + 2 i \, c\right )} - i \, d\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} - 1}} \sqrt {-\frac {8 i \, a}{d^{2}}} + 4 i \, a e^{\left (i \, d x + i \, c\right )}\right )} e^{\left (-i \, d x - i \, c\right )}\right ) + 3 \, {\left (d e^{\left (2 i \, d x + 2 i \, c\right )} - d\right )} \sqrt {-\frac {8 i \, a}{d^{2}}} \log \left ({\left (\sqrt {2} {\left (-i \, d e^{\left (2 i \, d x + 2 i \, c\right )} + i \, d\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} - 1}} \sqrt {-\frac {8 i \, a}{d^{2}}} + 4 i \, a e^{\left (i \, d x + i \, c\right )}\right )} e^{\left (-i \, d x - i \, c\right )}\right )}{12 \, {\left (d e^{\left (2 i \, d x + 2 i \, c\right )} - d\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)^(5/2)*(a+I*a*tan(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

1/12*(-16*I*sqrt(2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) -
1))*e^(3*I*d*x + 3*I*c) - 3*(d*e^(2*I*d*x + 2*I*c) - d)*sqrt(-8*I*a/d^2)*log((sqrt(2)*(I*d*e^(2*I*d*x + 2*I*c)
 - I*d)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) - 1))*sqrt(-8*
I*a/d^2) + 4*I*a*e^(I*d*x + I*c))*e^(-I*d*x - I*c)) + 3*(d*e^(2*I*d*x + 2*I*c) - d)*sqrt(-8*I*a/d^2)*log((sqrt
(2)*(-I*d*e^(2*I*d*x + 2*I*c) + I*d)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*
I*d*x + 2*I*c) - 1))*sqrt(-8*I*a/d^2) + 4*I*a*e^(I*d*x + I*c))*e^(-I*d*x - I*c)))/(d*e^(2*I*d*x + 2*I*c) - d)

________________________________________________________________________________________

Sympy [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: SystemError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)**(5/2)*(a+I*a*tan(d*x+c))**(1/2),x)

[Out]

Exception raised: SystemError >> excessive stack use: stack is 4369 deep

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)^(5/2)*(a+I*a*tan(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate(sqrt(I*a*tan(d*x + c) + a)*cot(d*x + c)^(5/2), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int {\mathrm {cot}\left (c+d\,x\right )}^{5/2}\,\sqrt {a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cot(c + d*x)^(5/2)*(a + a*tan(c + d*x)*1i)^(1/2),x)

[Out]

int(cot(c + d*x)^(5/2)*(a + a*tan(c + d*x)*1i)^(1/2), x)

________________________________________________________________________________________